
AD-A242 042 0

Mathematical Basis for a System to Manage

Automated Protocol Analysis

TR91-0241)110 April, 1991F LECTE

• OCT 2 41991

Richard M. Hawkes

Oc-uim At has been approv d 91-13522

The University of North Carolina at Chapel Hill
Department of Computer Science
CB#3175, Sitterson Hall
Chapel Hill, NC 27599-3175
919-962-1792
jbs@cs.unc.edu

A TextLab Report

This research was supported by NSF (Grants # IRI-8519517 and IRI-8817305), the Army
Research Institute (Contract # MDA903-86-C-345) and by the Office of Naval Research
(Contract # N00014-86-K-00680).

UNC is an Equal Opportunity/Affirmative Action Institution.

Abstract

The TextLab Research Group has developed a number of tools and
techniques for automatically recording users' interactions with computer
systems in machine-readable form, for replaying sessions, for analyzing
protocol data using cognitive grammars, for filtering analyzed data and
interfacing with statistical packages, and for displaying results in visual
forms that facilitate interpretation. The methodology they are developing
encourages the collection of large numbers of protocols that must be
stored, retrieved, divided into meaningful groups, etc., before they can be
analyzed. Thus, managing protocol data becomes increasingly important.
Our long-term goal is to develop an integrated environment from which to
control and monitor all stages of the process; the goal of this paper is to
provide a conceptual foundation for that system. It discusses issues
concerned with sorting and selecting protocols according to associated
attributes and with criteria for the proper application of particular
statistical or other analytic functions to particular forms of protocols or
data derived from them. The mathematical model presented is general and
can be applied to other applications in which matching analytic program
requirements with data type or organization is important.

STATEMENT A PER TELECON

RALPH WACHTER ONR/CODE 1133 DI,,

ARLINGTON, VA 22217
NWW 10/23/91

DAl

ICOP

Introduction

During the past six years, the TextLab Research Group has developed
a number of tools and techniques for automatically recording users'
interactions with computer systems in machine-readable form. They have
also developed tools for replaying sessions, for analyzing protocol data
using cognitive grammars, for filtering analyzed data and interfacing with
statistical packages, and for displaying results in visual forms that
facilitate interpretation. While the human interpreter is an integral and
indispensable part of this process, these tools automate many of the
protocol analysis steps, making it practical to analyze behaviors of large
numbers of subjects over extended periods of time under both naturalistic
and controlled conditions. Consequently, this methodology inevitably
leads to the collection of large numbers of protocols that must be stored,
retrieved, divided into meaningful groups, etc., before they can be
analyzed. Thus, managing protocol data becomes increasingly important.

Our long-term goal is to develop an integrated environment that
researchers can use to control and monitor all stages of the process.
While exploring requirements and design criteria, we encountered several
difficult, but interesting, issues concerned with sorting and selecting
protocols according to various criteria and with applying statistical and
other analytic functions to the selected protocols. This paper discusses
these issues in more detail to provide a conceptual foundation for the
system we plan to build.

This paper provides a mathematical specification of a data analysis
system. The discussion may be of interest to anyone engaged in the high-
level specification of data analysis systems. In general, the reader should
find here ways in which data analysis can be formally modeled. The
reader will see too how this model of data analysis is reflected in a
prototype system. It may be that specific objects in the mathematical
specification can be adapted or extended to solve problems in other types
of data analysis.

The mathematical specification presented here represents the
objects and tasks required for analyzing machine-recorded protocols.
Protocols present two special difficulties during analysis. These data
sets are often both massive and cryptic. The mathematical model
described tries to answer these difficulties.

This model is not comprehensive; it is a framework to aid the work
of system design. It is meant to demonstrate how a protocol analysis

system can be mathematically modeled as a step toward a prototype. This
model can be extended or implemented in a number of ways, depending on
specific goals. It forms the basis for the prototype described in the third
section and could serve as a guide in extending the generality of that
prototype.

This first section will discuss the problem of analyzing protocols.
The second section will give a mathematical specification to model the
analysis process. The third section suggests how this model of data
analysis might lead to a software system providing a graphical and
orderly approach to analyzing protocols.

What Is a Protocol?

This paper will use the word protocol to refer to a machine-
generated record of a process. Such a record usually takes the form of a
time-stamped list of events summarizing for later evaluation the course
of the process.

For example, the analysis tool described in this paper was motivated
by a need to handle sessions recorded by a writing support system known
as WE (Writing Environment). WE records each user action in the process
of organizing, writing, and rewriting a document. The resultant protocol
is large and nearly useless without automatic processing. For the
purposes of this paper, any such recorded list of discrete events may be
considered to be a protocol.

These protocols typically have built into them two characteristics
which make direct manipulation and analysis difficult. First, they are
massive: since computers can record discrete events very rapidly, the size
of such a recording is usually orders of magnitude larger than what might
be produced by a human observer. Second, they are, for the human reader,
cryptic, ordinarily being recorded in a notation chosen for ease of machine
manipulation and information density.

Computer-assisted analysis seems a good way to deal with machine-
generated protocols for two reasons:

First, though large, a protocol is easily packaged as an individual
file. Thus, the manipulation of protocols can, in part, make use of the file
system. Since computers normally have in place this system for handling
large data objects, a system for the specialized manipulation of protocols
already has a good foundation on which to build.

Second, the protocol can record its observations in a language suited
specifically to machines. Automatic transformations can readily be made
using this language. Results meaningful to the experimenter may be

3

produced after a series of automatic machine operations on the cryptic
data set.

What Is Analysis?

The purpose of data analysis is to make explicit the implicit. Data
analysis tries to find meaningful patterns where no specific meaning is
known to exist. Analytical understanding is arrived at through the
repetition of a two-part process: distinction and relation. In other words,
the experimenter has first to isolate the variables of interest and then to
see how they relate to each other. This model of analysis rests on the
merits of long-use and long-usefulness, being suggested by Aristotle in
his Physics and elaborated by Francis Bacon in his Novum Organum.

This process of distinguishing variables followed by relating them
suggests a possible form for a graphical tool to assist in the task of
analysis: a diverging tree, in which finer and finer distinctions are
established, used as input to another, converging tree of increasingly
general relationships (see Figure 1).

All variables

XDistinguish

variables

Synthesize

variables

Result relations

Figure 1:
A simple model of analysis

The analysis system described here follows this basic diamond form
of top-down sorting followed by bottom-up synthesis. Iteration of such
analysis then leads to the perception of meaningful patterns and an
understanding of the nature of the things observed.

4

Design of a Protocol Analysis Tool

What characteristics should be reflected in the mathematical
specification of a protocol analysis tool? Such a tool must manipulate
many large data sets, allowing the experimenter to collect, categorize,
and distinguish the data sets. Manipulation must be easy, encouraging
exploration of many possible groupings. This tool should allow the
protocols to be gathered into groups with similar traits for comparison
among themselves and with other groups.

Also, this tool must provide for meaningful transformations of the
data in order to discover implicit patterns and relations. This is not the
execution of a prescribed algorithm or predefined solution. Rather, it is
an interactive execution of transformations exploring likely paths,
hunting for an unknown solution. Operators in this system should be
dynamically typed, putting less of a demand on the user to fit data to
operators. Operators should be flexible in the input they accept and should
produce a predictable output so that the composition of operators is
simple.

This tool must include not only capacities for manipulation and
transformation, but also for iterations of these operations. The desired
tool will provide a memory, a thread laid through the maze of all possible
analytical paths. It should recall which protocols were used as input to
which operators. Then a previous path may be altered by a single step,
generating a new result while retaining the context of the simple change
that caused it. This ability provides the retrospection needed in the usual
course of data analysis.

The next section describes the mathematical constructs which seem
likely pieces to model such a tool. These constructs provide for the ready
manipulation of formally defined protocols. They also include operators
which are able dynamically to test their fit to groupings of protocols. The
third section of this paper will then show how these constructs can be
used in a prototype system.

5

Mathematical Description of a Protocol
Analysis System

The mathematics of this section is intended to serve as a formal
specification for a system to analyze protocols. The need for such a
specification became clear during a first attempt at programming a
protocol analysis system. The implementation ran up against many
limitations, and it became unclear how deeply design changes would have
to reach in order to obtain a prototype supporting the tasks typical of
protocol analysis. By rigorously modeling the objects and operations
involved in such analysis, this mathematical specification provides one
way in which the pieces needed for the system can be made to fit together
logically. This formalism also allows anyone extending the system to
determine whether a certain extension is possible and how it must be
designed in order to conform to the existing system.

This section describes two basic mathematical objects that serve
as abstractions for the manipulation and transformation of protocols. The
first subsection will define a sort tree for the selection and grouping of
protocols. The second subsection will describe the form of an operator
which may be applied to these groupings.

Attribute-Value Trees

An attribute-value tree (AVtree) is similar to a full, balanced tree
and is used for the selection and sorting of protocols. The protocols of an
AVtree are formally represented as its data objects. Each node of an
AVtree represents a particular set of data objects (protocols). Each level
in the AVtree is identified with an attribute. Data objects are sorted at a
particular level according to their values for the attribute of the level.
Figure 2 illustrates how a set of data objects (protocols) may be sorted in
such a tree.

6

Tom's
*gradeA

rotocol

, ' grade C
. set f , ' rotocols

' : rotootoscols

startgrade D

protcol gradeA

[root subject I grd etc.

Figure 2:
AVtree for sorting protocols (data objects)

With this picture in mind, we move into the series of definitions
concerning AVtrees:

Definition I1: Data Object

Let D be the set of all data objects.
Then d e D is a data object.

Data objects representing protocols are the original data objects in
the system. The process of analysis generates further data objects. Thus,
the intermediate results of analysis can be manipulated in a way similar
to the original data sets. Any object identified by a set of attributes may
be represented by a data object. No information is required about the

contents of an object thus represented.

7

Definition 2: Attributes And Attribute-Value Space

Let A be the set of all attributes. Then a E A iff

a = (fa, Va) where nil E Va and

where fa is a function such that

fa:D -4 Va.

Then Va is called the value set of the attribute. Instead of

fa(d), we may write a(d). (It is possible also to consider the

set V, the union of the value sets over all attributes.)

For a c A, (a,v) is an A Vpair iff v E Va.

For each a r A and each d e D, the position of d in the a

dimension of the attribute-value space is v = fa(d).

Attributes and values represent the identifying information stored
in the protocol's header. Attributes are defined as functions. If the
protocol has a header with an attribute having a certain value (e.g.:
subject = Tom), then the data object representing it will have a value
defined at that attribute. Imagine data objects existing in a space with
dimension equal to the cardinality of A, each dimension being labelled
with an attribute of a. Then each object has some position in this space
determined by its values on the attributes of A, where many of these
values might be nil.

Definition 3: Attribute-Value Tree (AVtree)

For al, . .. , an e A , t is an attribute-value tree iff

t - ((al, v1), . . . , (am, Vm), am+1 , an) for 1 _< m _< n,

and vij Vaifor 15i< m

and if i k, then ai ak for 1 <5i: n and 1 _<k < n.

8

Notation:

root(t) = (am,vm);

attr(t) - (al, . . . , an);

attrsel(t) - {ai, . . . , am} the set of select attributes of t;

avsel(t) - {(al, vi), ... , (am, Vm)1, the select AVpairs of t;

attrsort(t) = (am, an) the sort attributes of t in order;

vals(t) = {vl,..., vm), the set of values of t;

height(t) - n - m.

The attribute-value ordered pairs (AVpairs) of an AVtree serve to
select a set of data objects from the universe of all data objects, creating
a starting set for the tree to sort. Each object in this subuniverse has the
designated values on the selection attributes. The sorting attributes are
then used to create a sorted tree from these objects. Notice that data
objects are not mentioned in the definition. Their existence as contents
of AVtrees is made explicit in the next definition.

Definition 4: Contents of an AVtree

For AVtree t - ((al, vi), .. . , (am, Vm), am+l,..., an),

the contents of t is

c(t) = {d r D I ai(d) = vi for 1 < i < m}.

t is an empty AVtree if c(t) = 0.

Therefore, only the select attributes of t determine the contents of
t, that is, the data objects it selects. To capture the idea of sorting the
contents of an AVtree, consider each node of an AVtree also to be an
AVtree. Then the contents of a subtree will have the characteristics of
the selection AVpairs of that subtree.

9

Definition 5: Subtrees of an AVtree

For AVtree t = ((al, v1), . . , (am, Vm), am+1, an), u is an

immediate subtree of t (u e i-subtrees(t)) iff

u - ((al, v1),..., (am, Vm), (am+1, Vm+l), am+2, . . an),

and u is not empty.

Furthermore, s is a subtree of t (s e subtrees(t)) iff

s r i-subtrees(t)

or s e i-subtrees(r) where r E subtrees(t).

Notation for levels of subtrees:

Nl(t) = i-subtrees(t);

N 2 (t) = i-subtrees(i-subtrees(t));

Nk(t) = i-subtreesk(t) for 1 < k < height(t).

A subtree specifies additional selection values in order to produce
further subset divisions in the starting set of data objects. Some
additional distinctions concerning these subtrees may be defined.

Definition 6: Special Types of AVtrees

t is a terminal AVtree iff t has only select attributes, that is,

t is a list of AVpairs.

t is a singleton AVtree if c(t) contains only one data object.

Implications stated without proof:

1. A terminal AVtree has no subtrees.

2. The subtrees Nheight(t)(t) are terminal AVtrees
known as terminals of the AVtree t (terminals(t)).

3. A singleton AVtree is not necessarily degenerate.

4. An AVtree with no subtrees is a terminal.

10

The terminals are like any other subtree except they are on the last
level. Each terminal has as its contents a set of data objects, as do other
subtrees. The terminals may be thought of as subtrees rooted at the
leaves of t. Indeed, each subtree of t may be pictured as rooted at a node
of t, the node being designated by an AVpair. Each subtree description
subsumes the information contained in the description of its supertree, so
the supertree can be derived from the subtree. The relation of the
contents of the subtree and supertree remains undefined.

The next definition provides a rudimentary way of comparing
AVtrees.

Definition 7: Coextensive AVtrees

Two AVtrees t and u are coextensive (t - u) iff

c(t) = c(u).

Implication: For two AVtrees t and u, t - u iff

avsel(t) = avsel(u).

The forms of coextensive AVtrees may be completely different. All
that is required is that they have the same set of select attributes in any
permutation. This guarantees that the union of the contents of the
terminals will contain the same set of data objects.

It is easy to describe the contents of AVtrees but to deal with their
shapes is more difficult. In order to specify operators which produce
results grouped according to the shape of the input AVtree, it is necessary
to compare the shapes of trees.

Definition 8: Isomorphic AVtrees

Two AVtrees, t and u are isomorphic (t= u) iff

3 O:subtrees(t) --+ subtrees(u), a bijection such that for

tl, t2 e subtrees(t),

t2 N 1(t I) c= (t2) c- Nl(0(t)).

Two AVtrees can be isomorphic even if they have completely
different attributes. All that iF required is that they branch at the same
rate at their subtrees. The neck of selection AVpairs nced not be the same
length. Other than the neck, the two trees could be twisted around and
laid on top of each other for a perfect match.

Another simple way of specifying the shape of an AVtree is the
following:

Definition 9: Pruning

For two AVtrees t and u, u is a k-pruning of t (u = prunedk(t))
iff

t -((al, v1), . . ,(am, Vm), am+1, .. ,an),

u = ((al, v1), (am, Vm), am+l, . aq),

and

k = n - q for 0 < k n - m.

Implication: All prunings of an AVtree are coextensive;
that is, they have the same contents.

Pruning simply removes some number of bottom levels of an AVtree.

Everything else stays the same, including the contents of the pruned tree.

Attribute-Value Operators

Having established the ability to group and manipulate data objects
according to their values on attributes, the discussion turns to the
problem of transforming groupings of these data objects. Operators will
take an AVtree as input and produce an AVtree as output. An operator will
need to know the general shape of input AVtree on which it can work, the
types of data objects involved, and the type of output data objects it
produces. A basic assumption of AVoperators is that their output tree is a
pruning of the input tree. This constraint is meant to provide a graphical
basis for associating groupings of results with groupings of input objects.

The fiamework for an operator consists of three pieces: a domain
specification, a function on power sets of data objects, and the types of
data objects it produces. The function associated with the operator
produces groupings of new data depending on the groupings of the input

12

data objects. If each input data object produces an output object with the
same attribute-values, then the output tree will be isomorphic with the
input tree. If the function compares groups of data objects to produce one
new group of data objects, the output objects will have the attributes
common to all the input objects. Thus, they will form an AVtree one level
shorter than the input tree. They represent a summary of the information
in the input groupings. Such a function is illustrated in Figure 3.

grade A
, :lata objs s

J i m' s grade C
data oba objs

Figure 3:
First order synthesis function f

producing output AVtree from input AVtree

After defining AVoperators, we next describe how the operators may
be chained to produce successively shorter AVtrees of data objects. This

process draws to a summary point all the information present in the
original AVtree. Any number of chains of operators may be applied to an

input tree, each producing a different summary view of the input
information. This the goal of the protocol analysis system.

13

Definition 10: Multivalued Attributes

a is a multivalued attribute iff for aa : A,

a = (aa, Va) where Va is a cover of Vaa.

a(d) = Va may be written when aa(d) E Va r Va.

Also, for a r A, a < a (or a is a subattribute of a) iff

a is a multivalued attribute on a.

Furthermore, for (a,va) with Va Va, a multivalued attribute
and value set pair (MAVpair), and (a,v) an AVpair,

(a,v) < (a,va) iff a < a and V E Va.

If some variable a may be an attribute or multivalued
attribute, a <= a may be written if a = a or a < a for
attribute a.

A multivalued attribute specifies a covering set of subsets for the
value space of some attribute. A multivalued attribute will be used below
to specify the domain of an operator. This allows the operator to accept a
range of values which fall into some specified set.

More difficult is to allow the operator to check the structure of the
AVtree it is working on. The operator must know the general type of trees
on which it can work. If it is to compare a to b and c to d and then
compare those results, it has a subset structure like {{{a},{b}}, {{c},{d}}}.

The notation could quickly get out of hand without a more convenient
form. The idea of subcontents captures the AVtree structure in a simple
notation.

Definition 11: The Subcontents of AVtrees (see Figure 4)

Notation: For the set of all data objects D, the power set of D
is represented by to(D).

o2(D) = p(po(D)); po3 (D)= (p2(D)).

Thus, if x E pn(D), then x g pn-l(D).

14

Definition: The subcontents of t at some level is defined in

terms of the contents of t, c(t), thus:
cO(t) =c(t);

c 1(t) (B E p (c (t)) I B = c (t') fo rt' r=N t

Then,

C2(t) - C { (ti,), C(t12), - C(ti,n)

C3(t) ={C 2 (tl,i), C2(tl,2),.. C2(ti,n));

Ck(t) = Ckl(tl), Ck-1 (t 2),....Ck1(n)

Ck+l (t) = {Ck(tl), Ck(t 2) .. k(tm)};

where 1 -- k < height(t) -1.

Implication: B e Ck(t) =* B r= pk(C(t)).

Subcontentpotnocolsit poocl

1523,,,678

The subcontents notation provides an easy way to refer to the
various levels of groupings applied to the contents of an AVtree. With
these levels of groupings accessible, it becomes possible to consider a
function which maps from some groupings of data objects as subcontents
to an output data object. This function is peculiar in that it does not take
a single object or vector of objects as input. Rather, it takes some order
of power set of data objects. Such a function will be the heart of the
AVoperator.

Definition 12: Synthesis Function

So= {f I f: D - D),

S1 = {f I f: p (D) - D),

S2 = {f f: p 2 (D) -D,

and

Sk - {f I f: p k(D) -- D}.

Then, if f e Sk, f is a k-order synthesis function, and we write:

order(f) = k.

Implication: For k-order synthesis function f, and AVtree t
with k < height(t), ck(t) is in the domain of f.

Since a synthesis function maps elements of some order of power
set of data objects to a single data object, it can be used to summarize
those sets of data objects. In this way, it can collapse an AVtree into a
shorter tree in order to create a more generalized representation of the
input.

Such a function must be combined with two other pieces to form an
AVoperator: a filter that selects trees of suitable shape and type; and a
way to type the output of the function. With these three pieces known,
AVoperators may be composed to produce new operators. The resulting
AVtrees will form a regular pattern which can be easily drawn. Both the
domain filter and the output form can be specified as sets of AVpairs. A
set of AVpairs is the abstraction for a protocol header. The manipulation
of these headers is, therefore, conveniently accomplished by AVoperators.

16

Definition 13: AVoperators

p is an A Voperator iff

p = (tp, fp, rp) where tp is a set of AVpairs and/or MAVpairs,

fp is a synthesis function of order k, and rp is a set of AVpairs

unique for each output AVtree.

The definition begins by specifying the three parts of the
AVoperator: the domain set, the synthesis function, and the result set. It
then explains how the domain is tested and how the output data objects
and AVtree will look. In particular, the output objects will be marked
with uniquely identifying values in rp: e.g., their creation operator, their
input tree, and the time they were generated.

Definition 14: Domain of an AVoperator

For tp = {(al, vi), ... , (am, Vm)},

then an AVtree u is in the domain of p (u e domain(p)), iff

order(fp) < height(u),

and

V (ai, vi) E tp,

either 3 (a', v') e attrsel(u) I (a', v') <= (ai, vi);

or 3 a' r attrsort(u) I a' <= ai and vi = Va'.

The domain set and the order of the synthesis function determine the
input trees accepted. The domain set may include multivalued attributes.
Thus, it can act as a range within which the input tree's AVpairs must
fall. The input tree T is tested in two steps: First, its height must be
sufficient for fp to work on it. Second, all the AV/MAVpairs in the domain
set must be matched or must contain an AVpair in T. A special case is the
MAVpair whose value set is the value set for a sort attribute of T. This
allows the operator to check only for the presence of an attribute in T and
not for a particular value. If T passes both tests, the operator can produce
from it an output tree which makes sense in the system.

17

Definition 15: Function of an AVoperator and Type of Its
Result

For AVtrees T (input tree) and U (output tree),

with T E domain(p), and order(fp) = k, then

p(T) - U, iff:

1. avsel(U) - {(ai,vi)I (aj,vi) e rp u avsel(attrsel(T) - attrsel(rp))}
and attrsort(prunedk(T)) - attrsort(U).

2. V r e Nheight(U)(T) , where fp(ck(t)) Cy

then V (ai, vi) r avsel(U), ai(dr') - vi
and for dr e c(T) and a E attrsort(U), a(dT') = a(d=).

U, the output AVtree, must be structured to uniquely select the
created data objects and to sort them into a shape isomorphic with the
input tree pruned. The objects must be typed to conform with this
scheme. Since rp uniquely marks the objects, it is sufficient for U to have
these as selection AVpairs. In addition, U takes all AVpairs from T which
do not conflict with rp. Its sorting attributes are the same as T. The data
objects are then made to agree with the select attributes of U and with
the sort values held by their input data objects. Thus, they will be sorted
into a tree isomorphic with T pruned according to the number of lower
levels used up by fp. The output objects will, therefore, be sorted to
reflect the groupings of their source objects.

For practical purposes, a time stamp may be included in rp since the
contents of an AVtree may change. The same operator applied to the same
AVtree may produce different results at different times depending on the
universe of data objects. The AVtree is a filter for data and not a
container. The time stamp allows the user to keep track of the origin of
these different sets of results. The implementation, as discussed in the
next section, must include a time-stamped database for exact recreation
of an analysis session.

The three preceding definitions describe how to outline the
structure of an AVoperator without detailing its specific action. Such an
outlined operator can be tested and composed with other operators
without having to worry about its actual function. Any operator, whether
dummy or working, will pass on the information necessary to keep the
relationships between output data objects consistent.

18

Since the chaining of operators produces narrower and narrower
trees, it is possible to stack up the bottom layers of output trees into a
pyramid which is shaped like the original input tree, though perhaps
stretched out. This pyramid may be defined as the product of an input tree
and a series of operators, producing a tree of stacked results.

Definition 16: Result Trees (Retrees)

For t, an AVtree, and Pl ... Pn, AVoperators, r is a Retree iff

r- (t, pl,,...,pn) where

pi(t) E domain(p2), and

pi(Pi-i(• • .(pl(t)) . . . e domain(pil), for 2 :5 i < n-1.

Also, r is defined to be fully specified iff

height(Pn(Pn-1 (... (pi(t)) . . .))) = 0, and

contents(pn(Pn.l(... (p(t)) .))) = d, a single data object.

r is partially specified if for tn, the output of Pn,

height(tn) 0 and/or Icontents(tn)l > 1.

Implications:

1. For ti, the output of pi, ti is isomorphic to a pruning of t
shorter then the input tree of pi by the order of fpi.

2. Any permutation of the sort attributes of the
input tree of a Retree will still produce a Retree.

3. A new sort attribute inserted into the input tree
of a Retree still produces a Retree.

The Retree represents a record of a sequence of operations
concatenated with each other, starting on a particular input AVtree. Its
structure reflects the structure of the input tree, relating result nodes to
their various sources. The narrow top of the Retree contains those data
objects which are produced from the previous levels of the tree.
Therefore, the top of the Retree is a summary for what goes before. The
Retree is subject to permutations determined by how the operators fit

19

together. It will be the basis for the visible representation of analysis
results as described in the next section.

Definition 17: Operator Tree (Optree)

For the AVtree T,

optree(T) = {p is an AVoperator I T e domain(p)}.

Implication: For t r subtrees(T), optree(T) Q optree(t).

An Optree allows us to picture the composition of operators without
considering functionality. The nodes (subtrees) of an AVtree may be
thought of as containing sets of possible operators instead of data
objects. For some AVoperator P and AVtree T, optree(P(T)) sorts out all
the possible operators which may follow P applied to T.

The structures outlined above allow manipulation and
transformation of protocols to be carried out according to regular
patterns. They allow equivalencies and similarities to be spotted and
exploited. Using this foundation, the relationship of various sortings and
the interaction of different operators may be denotationally specified.
The mathematics is not simple, but these definitions provide a means by
which to develop an analysis system having pieces consistent with one
another. They are the basis for the control of the prototype described in
the next section.

20

Design for a Prototype

This section describes the design of a prototype protocol analysis
system which is being implemented along the lines specified in the
mathematical formalism. The system provides a graphical means for
manipulating and operating on large numbers of machine-generated
protocols. The principal graphical structure is a selection tree placed
base-to-base with a tree of converging operations. This shape reflects
the process of distinction followed by relation. The converging tree is
formed by concatenating the increasingly narrow base layers of the output
trees generated by succeeding operators. These layers combine to form
the converging Result tree, a picture of the summary process (compare
Figure 1, above).

The system consists of three modules: First, the database is an
interface to the file system. It creates the universe of data objects from
the files of protocols and serves as a communications link. The database
also keeps a historical record of the objects in it at any particular time.
Second, the select-sort mode is for creating and manipulating AVtrees.
Third, the operator mode provides access to operators on AVtrees and
access to the results of those operators.

Select-Sort Mode

The select-sort mode enables the visual selection and grouping of
data objects as a necessary step in analysis. Data objects may be created
from filed protocols or'generated by operators to become data objects in
the system. These results may also be selected and grouped for further
analysis.

Figure 5 pictures an AVtree in select-sort mode. The select AVpairs
form a neck stacked to the left. All data objects in the contents of the
tree will satisfy these AVpairs. The tree is then sorted on the key
attributes listed along the bottom menu bar. The data objects themselves
ordinarily are not pictured but are grouped together in the terminal tree
nodes. Here they are shown as the shaded leaf nodes, but they may be
hidden by clicking a menu selection.

21

PROOrC:- *iOCE: PTCVon Co,,t,01

gnode: 9

5 node: 24

Ct 2o211111

d6L.Jnde: 24

SA' EY date Iusar Ird LLAYES IE A :7 .(EV: B KEY9 IKEY:!

Figure 5:
Select-sort mode with AVtree grouping data objects

22

Many potentially complex tree manipulations are made simple. The
sort attribute keys can be added, deleted, or shuffled, immediately giving
a new sort tree. Any AVtree, defined as a series of AVpairs and
attributes, can be saved as a filter and recalled later. Any supertree of
the current tree can be reached by clicking on a node of the neck.
Likewise, a subtree can be made the displayed tree by clicking on its root.
Also the number of sublevels displayed for the current tree can be
adjusted. These subtree changes and level selections combine to hide a
great deal of information contained in a large set of data objects.

Direct access to the contents of the data objects is also provided
through the select-sort mode. Changes to the AVpairs identifying each
data object can be made on the local level or written back to the protocol
files. Identical changes to all the contents of a particular subtree may be
made with a single operation. An edit mode is also connected to the
select-sort mode so that the protocol file associated with a data object
can be edited.

Operator Mode

Figure 6 shows a Result tree which has been filled in by the
operators listed along the bottom menu bar. Each operator produces a tree
shaped like the input AVtree, only some number of levels shorter. In this
case, each of the average operations produces a tree with one less level
than the tree produced by the previous operator. When the bottom levels
of these output trees are concatenated, the Result tree is formed.

23

-ZrCOL YCE PTC View Control payPn

4 graode: 9 T,4flsit~ofls 1818

5naode! 75 Transitions 84 8

9 node: 22 1T,ansIit~ons 200

0: 25 t~a1~ions 398O

Patgide 2140 1 Transion 7 7

F Pise:11 Tans~ton 75 77

!Zx~~~~~~~~~A wSY ro J1-,40 LIVS ,1O ~ n~w H~~'g u,~Ig~~

4 Sode 17 TrasFiune 26:6
Reulteeprdue rom AHe in oprao2md

gnde 1 24 25

The first operator takes protocols as inputs. It reads the protocols
and creates new protocols listing all events as generic transition events.
The next operator counts the number of transitions in the new protocols.
The third operator averages these counts. Because of the shape of the
AVtree, these are averages for protocols grouped by subject and grade.
The last operator also takes an average, this time for each subject. These
last nodes represent a summary of all the input data objects in their
peculiar groupings.

These operators are kept simple so as not to obscure the structure
of the operator mode. In fact, the function of an operator may be complex,
perhaps passing data to a statistical analysis package and receiving back
a graphical output. Complex data objects are not viewed directly in
operator mode, but rather in a data object viewing mode. All results are
organized in the Result tree showing their relationships with each other
and with the input data objects. Thus, relations between data objects are
clarified by hiding much of their information, but that information is
immediately available in a viewing mode.

The operations available at any point in the analysis are offered on a
dynamic menu. The menu selections depend on the type and structure of
the AVtree. Operators are queried as to whether they can work on the
existing AVtree, and those which can are placed on the menu. The use of
an operator is recorded in the bottom menu bar. A series of operators thus
forms a script which can be reapplied to any suitable input tree. A script
may be edited by moving and deleting operators, and the new Result tree is
immediately produced. A script may also be composed into a single
operator for repeated application and later use.

Operators do one of three things: produce a new attribute and value
for a data object by looking at its data set; produce one new data object
for one input object; or combine input data objects. The actual function of
an operator can be programmed in the system or called externally, e.g.,
from a statistics package.

25

Conclusion

The massive and cryptic nature of machine-recorded protocols
creates special difficulties for analysis. A tool for the manipulation of
protocols and for the translation of their recorded languages into
meaningful summaries ameliorates these difficulties. The mathematical
specification described in this paper provides a logical and commodious
framework within which such an analysis tool may be developed. The
complexities due to massiveness and crypticness are hidden.

The analysis of protocols, however, has another problem which is
common to all data analysis. Since it is exploration, data analysis is
inherently difficult. Analysis has no path or algorithm to follow. It
proceeds by experiment, experience, and insight. The mathematical model
presented here constrains analysis by assuming a characteristic
regularity. It supports a metamethod for analysis: the method of repeated
distinction and relation. These restrictions provide a simplified problem
more susceptible of solution.

A ,iumber of problems are not answj_,ed oy this model. If the data
sets are few in number or recorcied without a regular notation, this model
fails. Also, since operators may only be applied in sequence, only simple
analysis sessions are repeatable. f-aiiy, t.i connection of input objects
to operators is strictly controlled by the form of the tree. One possible
extension to this design would be a network mode for the linking of data
and operations in a manner beyond the limitations of the two trees. A
petri-net control on a network of data objects and operations would allow
an operation to fire when presented with sufficient data of correct type.
The groupings of data and the relation of output to input would be less
clear in such a network mode. The difficulties of such a mode are similar
to the general problem of programming-by-pictures. Another possible
mode would be used to collect and compare similar analysis sessions,
giving an overview of the variations among the sessions.

The use of computers in data analysis is an active field. The design
of this protocol analysis system suggests two useful directions for
further work. First, in analysis, temporary and adjustable constraints are
an effective way to limit the otherwise overwhelming number of
possibilities. Too many possibilities obscures potential solutions.
Second, the construction of an operator should not require a complete
algorithm. To be able to build approximate operators is useful if the
nature of the result can only be partially specified. The ability to be

26

vague about what comes next is not natural to an algorithmic description
but very natural for exploration.

The protocol analysis system modeled here seems to conform to
some basic needs of the experimenter as well as offering feasible
extensions. Within the framework of the mathematical description, a
number of theorems might be developed to enable the automatic
generation of AVtrees and application of operators for rapid testing of
whole branches of the analysis space. Such potential power could prove
useful for an experimenter. This model was originally designed to raise
and explore such possibilities. The results suggest further effort in this
direction might be fruitful.

Acknowledgments

This research was supported by NSF (Grants # IRI-8519517 and IRI-
8817305), the Army Research Institute (Contract # MDA903-86-C-345)
and by the Office of Naval Research (Contract # N00014-86-K-00680).
Gordon Ferguson contributed to the content of this report, while John
Smith contributed to both the content and the presentation.

27

